Bioactives of Artemisia dracunculus L. Mitigate the Role of Ceramides in Attenuating Insulin Signaling in Rat Skeletal Muscle Cells

نویسندگان

  • Diana N. Obanda
  • Amy Hernandez
  • David Ribnicky
  • Yongmei Yu
  • Xian H. Zhang
  • Zhong Q. Wang
  • William T. Cefalu
چکیده

Ectopic lipids in peripheral tissues have been implicated in attenuating insulin action in vivo. The botanical extract of Artemisia dracunculus L. (PMI 5011) improves insulin action, yet the precise mechanism is not known. We sought to determine whether the mechanism by which PMI 5011 improves insulin signaling is through regulation of lipid metabolism. After differentiation, cells were separately preincubated with free fatty acids (FFAs) and ceramide C2, and the effects on glycogen content, insulin signaling, and ceramide profiles were determined. The effect of PMI 5011 on ceramide accumulation and ceramide-induced inhibition of insulin signaling was evaluated. FFAs resulted in increased levels of total ceramides and ceramide species in L6 myotubes. Saturated FFAs and ceramide C2 inhibited insulin-stimulated phosphorylation of protein kinase B/Akt and reduced glycogen content. PMI 5011 had no effect on ceramide formation or accumulation but increased insulin sensitivity via restoration of Akt phosphorylation. PMI 5011 also attenuated the FFA-induced upregulation of a negative inhibitor of insulin signaling, i.e., protein tyrosine phosphatase 1B (PTP1B), and increased phosphorylation of PTP1B. PMI 5011 attenuates the reduction in insulin signaling induced by ceramide accumulation, but the mechanism of improved insulin signaling is independent of ceramide formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactives of Artemisia dracunculus L enhance cellular insulin signaling in primary human skeletal muscle culture.

An alcoholic extract of Artemisia dracunculus L (PMI 5011) has been shown to decrease glucose and improve insulin levels in animal models, suggesting an ability to enhance insulin sensitivity. We sought to assess the cellular mechanism by which this botanical affects carbohydrate metabolism in primary human skeletal muscle culture. We measured basal and insulin-stimulated glucose uptake, glycog...

متن کامل

An Extract of Artemisia dracunculus L. Inhibits Ubiquitin-Proteasome Activity and Preserves Skeletal Muscle Mass in a Murine Model of Diabetes

Impaired insulin signaling is a key feature of type 2 diabetes and is associated with increased ubiquitin-proteasome-dependent protein degradation in skeletal muscle. An extract of Artemisia dracunculus L. (termed PMI5011) improves insulin action by increasing insulin signaling in skeletal muscle. We sought to determine if the effect of PMI5011 on insulin signaling extends to regulation of the ...

متن کامل

The effect of Russian Tarragon (artemisia dracunculus L.) on the plasma creatine concentration with creatine monohydrate administration

Background It has previously been shown that the plasma concentration of creatine following supplementation is influenced by extracellular concentrations of insulin and glucose, the form in which creatine is administered, and also the creatine concentration in the muscle cells. The common practice of raising insulin levels to increase initial uptake into muscle, by means of high amounts of gluc...

متن کامل

Effects of Artemisia dracunculus essential oil on diarrhea and intestinal transit time in rat gastrointestinal tract

Introduction: Artemisia dracunculus L. belongs to Asteraceae family, and is a medicinal plant widely used in traditional medicine as a remedy for gastrointestinal disturbances. This study was undertaken to evaluate the effects of essential oil of A. dracunculus (EOAD) on the rat alimentary tract. Methods: The EOAD was extracted by Clevenger apparatus using hydrodistillation. LD50 was calcula...

متن کامل

Insulin Increases Ceramide Synthesis in Skeletal Muscle

AIMS The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. METHODS Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG) were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012